Text extracted from the latest applicable Edition of ISO/IEC 17025

<table>
<thead>
<tr>
<th>CAB/ILAC TP COMMON UNDERSTANDING OF THE RELEVANT REQUIREMENTS OF ISO/IEC 17025</th>
</tr>
</thead>
</table>
| **5.4.6.2** Testing laboratories shall have and shall apply procedures for estimating uncertainty of measurement. In certain cases the nature of the test method may preclude rigorous, metrologically and statistically valid, calculation of uncertainty of measurement. In these cases the laboratory shall at least attempt to identify all the components of uncertainty and make a reasonable estimation, and shall ensure that the form of reporting of the result does not give a wrong impression of the uncertainty. Reasonable estimation shall be based on knowledge of the performance of the method and on the measurement scope and shall make use of, for example, previous experience and validation data.
NOTE 1 The degree of rigor needed in an estimation of uncertainty of measurement depends on factors such as:
- the requirements of the test method;
- the requirements of the client;
- the existence of narrow limits on which decisions on conformance to a specification are based.
NOTE 2 In those cases where a well-recognized test method specifies limits to the values of the major sources of uncertainty of measurement and specifies the form of presentation of calculated results, the laboratory is considered to have satisfied this clause by following the test method and reporting instructions (see 5.10). |
| **5.4.6.2 JWG-CU 1**
Test laboratories shall have a documented policy on the application of measurement uncertainties, and shall be capable of estimating them. |
| **5.4.6.2 JWG-CU 2**
test laboratories (designated laboratory staff) shall be able to demonstrate this capability of estimating uncertainty of measurements carried out in that laboratory and provide typical examples. |
| **5.4.6.2 JWG-CU 3**
For purely qualitative tests, an estimation of measurement uncertainty is not required, e.g. breaking capacity test on Circuit Breakers. However, the laboratory shall carry out the identification of the influential parameters and shall demonstrate that these parameters are under control. |
| **5.4.6.2 JWG-CU 4**
Test laboratories are not required to recalculate measurement uncertainties for each and every test carried out. However, if conditions of the test are very different from those |

<p>| | |</p>
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>described in the relevant test procedure on which the estimation of measurement uncertainties is based, the laboratory shall investigate the influence of these differences.</td>
<td></td>
</tr>
</tbody>
</table>

Test reports

5.10.3.1 In addition to the requirements listed in 5.10.2, test reports shall, where necessary for the interpretation of the test results, include the following:

- deviations from, additions to, or exclusions from the test method, and information on specific test conditions, such as environmental conditions;
- where relevant, a statement of compliance/non-compliance with requirements and/or specifications;
- where applicable, a statement on the estimated uncertainty of measurement; information on uncertainty is needed in test reports when it is relevant to the validity or application of the test results, when a client's instruction so requires, or when the uncertainty affects compliance to a specification limit;
- where appropriate and needed, opinions and interpretations (see 5.10.5);
- additional information which may be required by specific methods, clients or groups of clients.

5.10.3.1 JWG

The statement of uncertainty is required only in the three situations described in the following extract from 5.10.3.1 c):

1. information on uncertainty is needed in test reports when it is relevant to the validity or application of the test results
2. when a client’s instruction so requires, or
3. when the uncertainty affects compliance to a specification limit;
Text extracted from the latest applicable Edition of ISO/IEC 17025

Subcontracting of tests and calibrations

4.5.1 When a laboratory subcontracts work whether because of unforeseen reasons (e.g. workload, need for further expertise or temporary incapacity) or on a continuing basis (e.g. through permanent subcontracting, agency or franchising arrangements), this work shall be placed with a competent subcontractor. A competent subcontractor is one that, for example, complies with this International Standard for the work in question.

4.5.2 The laboratory shall advise the client of the arrangement in writing and, when appropriate, gain the approval of the client, preferably in writing.

4.5.3 The laboratory is responsible to the client for the subcontractor’s work, except in the case where the client or a regulatory authority specifies which subcontractor is to be used.

4.5.4 The laboratory shall maintain a register of all subcontractors that it uses for tests and/or calibrations and a record of the evidence of compliance with this International Standard for the work in question.

CAB/ILAC TP COMMON UNDERSTANDING OF THE RELEVANT REQUIREMENTS OF ISO/IEC 17025

4.5.1 JWG

It is noted that:

- IEC Schemes are accepting a testing laboratory for a particular standard in full - only if it can demonstrate technical competence and possession of all required testing and measuring equipment;
- ABs accreditation laboratories for individual tests of a product standard and/or for test methods.

In the IEC Schemes, certain tests which are rarely performed, under certain conditions, may be subcontracted on a permanent basis according to the Rules of the IEC Schemes.

For AB accreditation, any test that cannot be performed by the laboratory is not part of the accreditation scope.
4.1 Organization

4.1.1 The laboratory or the organization of which it is part shall be an entity that can be held legally responsible.

4.1.2 It is the responsibility of the laboratory to carry out its testing and calibration activities in such a way as to meet the requirements of this International Standard and to satisfy the needs of the client, the regulatory authorities or organizations providing recognition.

4.1.3 The laboratory management system shall cover work carried out in the laboratory’s permanent facilities, at sites away from its permanent facilities, or in associated temporary or mobile facilities.

4.1.4 If the laboratory is part of an organization performing activities other than testing and/or calibration, the responsibilities of key personnel in the organization that have an involvement or influence on the testing and/or calibration activities of the laboratory shall be defined in order to identify potential conflicts of interest.

NOTE 1 Where a laboratory is part of a larger organization, the organizational arrangements should be such that departments having conflicting interests, such as production, commercial marketing or financing do not adversely influence the laboratory’s compliance with the requirements of this

4.1 and 4.1.5 JWG

In accreditation, a laboratory having one or more **satellite facilities** that are located away from main facility can be accredited as a single laboratory entity if:-

- a) these facilities form one legal entity,
- b) the accreditation is for the total organisation,
- c) there is one management system covering the total organisation,
- d) one person takes technical responsibility for the final test report issued,
- e) there are adequate procedures in place to protect the integrity of the equipment under test,
- f) the sequence of testing detailed in the product test standard is not compromised.
<table>
<thead>
<tr>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>NOTE 2 If the laboratory wishes to be recognized as a third-party laboratory, it should be able to demonstrate that it is impartial and that it and its personnel are free from any undue commercial, financial and other pressures which might influence their technical judgement. The third-party testing or calibration laboratory should not engage in any activities that may endanger the trust in its independence of judgement and integrity in relation to its testing or calibration activities.</td>
<td></td>
</tr>
<tr>
<td>4.5.1 When a laboratory subcontracts work whether because of unforeseen reasons (e.g. workload, need for further expertise or temporary incapacity) or on a continuing basis (e.g. through permanent subcontracting, agency or franchising arrangements), this work shall be placed with a competent subcontractor. A competent subcontractor is one that, for example, complies with this International Standard for the work in question.</td>
<td></td>
</tr>
<tr>
<td>---</td>
<td>--</td>
</tr>
</tbody>
</table>
| **4.12.2.1** The laboratory shall retain records of original observations, derived data and sufficient information to establish an audit trail, calibration records, staff records and a copy of each test report or calibration certificate issued, for a defined period. The records for each test or calibration shall contain sufficient information to facilitate, if possible, identification of factors affecting the uncertainty and to enable the test or calibration to be repeated under conditions as close as possible to the original. The records shall include the identity of personnel responsible for the sampling, performance of each test and/or calibration and checking of results. | **4.12.2.1 (4.13) JWG**
While ABs require retention of records in line with the laboratory’s procedures, the IEC Schemes require retention of records for a period of time related to the term of validity of the relevant certificate. |
| **NOTE 1** In certain fields it may be impossible or impractical to retain records of all original observations. | |
| **NOTE 2** Technical records are accumulations of data (see 5.4.7) and information which result from carrying out tests and/or calibrations and which indicate whether specified quality or process parameters are achieved. They may include forms, contracts, work sheets, work books, check sheets, work notes, control graphs, external and internal test reports and calibration certificates, clients' notes, papers and feedback. | |